当前位置: 首页>編程日記>正文

Touch 电容式触摸按键 触摸按键PCB设计参考

Touch 电容式触摸按键 触摸按键PCB设计参考

电容式触摸按键设计应用参考

电容式触摸按键美观时尚,与传统的机械按键相比,具有寿命长、功耗小、成本低、体积小、持久耐用等优点,只要轻轻触碰就可实现开关控制、量化调节甚至是方向控制,颠覆了传统意义上的机械按键。现在电容式触摸按键已经广泛应用于手机、洗衣机和电视遥控器等一系列消费类电子产品中。

1.    触摸按键原理

1.1RC充放电电路

在模拟和脉冲数字电路中,经常涉及到RC电路,根据电阻R和电容C的取值不同、输入输出关系以及处理的波形之间的关系产生了具有不同功能的RC电路,如:微分电路、积分电路、滤波电路等。RC充放电电路如下图所示:

                                                   图1.1 RC充放电电路

当开关K处于断开状态时,电容C两端的电压等于零;当开关K闭合时,压降V1通过电阻R向电容C充电,在电路接通的瞬间,电容C上的电压 ,充电电流最大值等于 。随着电容C两极上电荷的累积, 逐渐增大,电阻R上的电压 ,充电电流 /R。随着时间的增加,电流逐渐减小, 逐渐增大,直至 、 (理想状态)充电过程结束。

RC电路充电公式为:

由上述公式可知:

(1)电容C电量充满需要无穷大的时间,因为指数值只会无限接近于0。当 时, ;当 时, ,一般情况下,经过3~5个RC后,充电过程结束。

(2)在同等的条件下,电容C越大,充电达到某个临界值的时间越长。

 

                          图1.2不同电容值电压 随时间变化

1.2 电容形成

在任何两个导电的物体之间都存在电容,电容的大小与介质的导电性质、极板的大小及极板周围是否存在导电物质等有关。PCB上大面积的焊盘(触摸按键)与附近的地构成分布电容 。由于人体电容的存在,当手指触摸按键后,人体电容并上分布电容,使得总电容增加,引起的电容变化 。触摸电容 变化如图1.3所示。

                                                                     图1.3触摸电容 变化图

1.3 触摸按键检测

触摸感应盘和单片机引脚形成一个不断充放电的RC电路,如果没有触摸按键,RC电路有一个固定的充放电周期;如果手指触摸按键后,那么等效电容 增加,充放电周期就变长,频率则相应降低。

一般采用以下两种方式判断电容按键是否按下:

(1)相同的充电时间,通过单片机内部AD采集触摸通道的电压值,与未按下时的值作差,再根据定义的阈值识别按键按下与抬起,如CH549、CH579系列。

(2)单片机内部采集固定时间段的脉冲个数,与未按下时的个数作差,然后根据定于的阈值识别按键的按下与抬起,如CH554系列。

2. PCB常规设计指南

在PCB中,很多硬件元器件如电容、电阻、LED、连接头等都会增加触摸按键的寄生电容,即使是无关的走线也有可能与感应元件产生耦合,从而降低触摸按键的灵敏度。因此在设计PCB时必须仔细检查和优化整个布局走线。

2.1 按键的形状与尺寸

2.1.1形状

如图2.1所示,任何形状都可用于触摸按键在PCB上的设计,并不影响触摸的性能,仅于板子的美观程度有关。

                        图2.1按键形状

2.1.2尺寸

通常情况下,按键感应盘越大,与手指接触的面积越大,相应的也会显著提升 。推荐面积应尽量接近手指接触按键的有效面积。较小的按键也可以工作,但会降低一定的灵敏度。同时,按键感应盘的面积增大到一定程度后,接着增加面积几乎不能带来灵敏度的提升,反而容易受到干扰降低灵敏度。

表1触摸按键的感应盘尺寸和等效电容参考

感应盘形状

最小尺寸

典型尺寸

最大尺寸

等效电容(参考值)

圆形(直径)

4mm

10mm

25mm

4 ~ 6pF

四边形

4mm * 4mm

10mm * 10mm

25mm * 25 mm

4 ~ 6pF

八边形

4mm * 4mm

10mm * 10mm

25mm * 25 mm

4 ~ 8pF

滑动条

8mm * 8mm

12mm * 12mm

25mm * 25 mm

6 ~ 8pF(单个)

2.2 布局与走线

2.2.1布局参考

触摸按键既可完成普通的独立按键,也可通过相应的布局形成滑动条或圆盘滚轮触摸,如图2.2所示。一般情况下,按键都是相互邻近的,如果间距太小,容易一次触发多个按键,推荐间距要大于4mm,同时可根据感应盘的大小适当增加一些间距。

                                                                

图2.2按键布局设计

2.2.2走线设计

触摸按键与处理器之间的走线的长度会增加并联电容,从而降低触摸检测的灵敏度。通常在走线时应注意以下几个方面。

(1)长度

走线时应尽量缩短触摸按键至处理器的长度,以降低元件与走线产生耦合的风险。建议走线长度小于100mm。

(2)宽度

走线的宽度同样也会增加触摸按键的感应电容,同时也会增大与其他元件的耦合。因此设计时,走线宽度应为制板工艺的最小线宽,通常情况下,双面板尽量采用5~8mil的线宽,单面板采用10~15mil的线宽。

(3)避免与其他信号线平行

触摸按键的走线禁止靠近如IIC或SPI等通讯线,因为通讯线的频率会影响触摸按键的性能。如果必须要靠近通讯线时,应将两者放置在不同层,并保证垂直交叉或有一定的间隔。同时相邻按键之间的走线间距至少应在1mm以上。

 

 

                                                   图2.3通讯线走线正误参考

(4)铺地

触摸按键感应盘底层正下方不铺地,顶层如果需要铺地隔离时,一般采用网络铺地,同时触摸感应盘和其引线与GND的距离要保证大于3mm。

2.3电源

触摸检测是通过测量电容的微小变化,要求电源的纹波和噪声要小,同时注意避免由电源串入的外界强干扰。尤其是应用于电磁炉、微波炉时,必须能有效的隔离外部干扰及电压突变,因此对电源的稳定性有较高的要求。


https://www.fengoutiyan.com/post/15314.html

相关文章:

  • 三触摸按键
  • 电容式触摸按键工作原理
  • 触摸按键电路
  • RC电容触摸感应按键
  • 触摸按键板
  • 电容式触摸按键失效
  • 电容触摸按键电路
  • 电容屏按键
  • 鏡像模式如何設置在哪,圖片鏡像操作
  • 什么軟件可以把圖片鏡像翻轉,C#圖片處理 解決左右鏡像相反(旋轉圖片)
  • 手機照片鏡像翻轉,C#圖像鏡像
  • 視頻鏡像翻轉軟件,python圖片鏡像翻轉_python中鏡像實現方法
  • 什么軟件可以把圖片鏡像翻轉,利用PS實現圖片的鏡像處理
  • 照片鏡像翻轉app,java實現圖片鏡像翻轉
  • 什么軟件可以把圖片鏡像翻轉,python圖片鏡像翻轉_python圖像處理之鏡像實現方法
  • matlab下載,matlab如何鏡像處理圖片,matlab實現圖像鏡像
  • 圖片鏡像翻轉,MATLAB:鏡像圖片
  • 鏡像翻轉圖片的軟件,圖像處理:實現圖片鏡像(基于python)
  • canvas可畫,JavaScript - canvas - 鏡像圖片
  • 圖片鏡像翻轉,UGUI優化:使用鏡像圖片
  • Codeforces,CodeForces 1253C
  • MySQL下載安裝,Mysql ERROR: 1253 解決方法
  • 勝利大逃亡英雄逃亡方案,HDU - 1253 勝利大逃亡 BFS
  • 大一c語言期末考試試題及答案匯總,電大計算機C語言1253,1253《C語言程序設計》電大期末精彩試題及其問題詳解
  • lu求解線性方程組,P1253 [yLOI2018] 扶蘇的問題 (線段樹)
  • c語言程序設計基礎題庫,1253號C語言程序設計試題,2016年1月試卷號1253C語言程序設計A.pdf
  • 信奧賽一本通官網,【信奧賽一本通】1253:抓住那頭牛(詳細代碼)
  • c語言程序設計1253,1253c語言程序設計a(2010年1月)
  • 勝利大逃亡英雄逃亡方案,BFS——1253 勝利大逃亡
  • 直流電壓測量模塊,IM1253B交直流電能計量模塊(艾銳達光電)
  • c語言程序設計第三版課后答案,【渝粵題庫】國家開放大學2021春1253C語言程序設計答案
  • 18轉換為二進制,1253. 將數字轉換為16進制
  • light-emitting diode,LightOJ-1253 Misere Nim
  • masterroyale魔改版,1253 Dungeon Master
  • codeformer官網中文版,codeforces.1253 B
  • c語言程序設計考研真題及答案,2020C語言程序設計1253,1253計算機科學與技術專業C語言程序設計A科目2020年09月國家開 放大學(中央廣播電視大學)
  • c語言程序設計基礎題庫,1253本科2016c語言程序設計試題,1253電大《C語言程序設計A》試題和答案200901
  • 肇事逃逸車輛無法聯系到車主怎么辦,1253尋找肇事司機